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Abstract 

Statistics is essential in biological and ecological scientific research. However, the 

default Frequentist statistics based on p-value and null hypothesis testing is often 

misused and misinterpreted, hence causing reproducible crises. The p-value concept 

deserved further examination because it has been irretrievably lost. Therefore, there 

is dire need for reform in the default Frequentist statistics as practiced by researchers 

because of the perils of p-values. Bayesian statistics, using the tools of Bayes Factors 

and posterior distributions derived from priors and likelihood function; rooted in 

Bayes’ Theorem is one of the suggested alternatives. Frequentist (least square) and 

Bayesian (specifying uniform Jeffreys-Zellner-Siow prior, r-scale =0.35) regression 

models, a standard statistical protocol in fisheries were applied to determine the 

allometric growth coefficient based on length (mm) and weight (g) measurements of 

juvenile African mud catfish, Clarias gariepinus from Epe Lagoon. The growth 

coefficient, b=3.20, 95% Confidence Interval [3.07, 3.34], t(96)=47.55, p<0.001 was 

significant with 96% explanatory power (R2=0.96).While Bayesian method, with 

96% explanatory power (R2=0.96), also estimated, b=3.20, (with Credible Interval 

between 3.06 and 3.32). The Bayes Factor (>100) suggested the data is more 

plausible under the alternative model than the null model, but p-value cannot 

quantify evidence in support of alternative hypothesis, since p-value can only reject 

or fail to reject a null hypothesis. These findings suggested that juvenile C. 

gariepinus thrived in Epe Lagoon. Therefore, Bayesian inference is a robust 

substitute for Frequentist regression model in fisheries.  

Introduction 

Bayesian statistics is experiencing a renaissance in the 

fields of biological and environmental sciences 

including fishery. It is a different statistical framework 

(contrary to the common statistics paradigm learnt in 

introductory statistics courses probably when getting a 

first degree in the sciences, technically called 

Frequentist statistics unknown to many) involving the 

principles of conditional probability rooted in the Bayes 

Theorem that provides a mathematical framework for 

updating and revising beliefs about hypotheses and 

parameter estimates conditional on observed data with 

prior knowledge by using the Bayes Factor (BF) 

(Kruschke 2010; Doll and Jacquemin 2018; 

Faulkenberry 2018; Faulkenberry et al 2020; Millar 

2022). Bayesian statistics allows researchers to 

incorporate their prior knowledge into a formal model 

(Morris et al 2014) which is conceptually and 

practically impossible in the default Frequentist 

statistics. A notable difference between the Bayesian 

and the Frequentist statistical paradigms is rooted in the 

concept of probability, a central dogma in statistics 

describing the inherent uncertainty and randomness of 

events in the natural realm. While the frequentist 

envisages probability as the long-run relative frequency 

of a particular outcome/event occurring in many trials, 

the Bayesian statistics views probability as subjective 

measures of uncertainty about events based on previous 

knowledge associated with it (Kruschke 2010; Morris et 

al 2014; Hackenberger 2019). 

The use of descriptive and inferential statistics is 

essential in biological and ecological scientific research, 

but the widespread use of the Frequentist statistics, 

based on the p-value and Null Hypothesis Significance 

Testing (NHST) is mostly misinterpreted and abused, 

fueling the reproducibility crisis (Hu et al 2016). This 

abuse is not only reflected in p-hacking, which describes 

hypothesizing after the results are known, but also 

cherry-picking statistical significant (Fraser et al 2018); 

as in all scientific fields, of which fish and fisheries 

biologists are no exception to this pervasive trend 

hindering the ability to corroborate or nullify results. A 

number of problems with conventional Frequentist 

techniques have also been found. The American 

Statistical Association gave the clarion call that the 

terms p-value and NHST, as well as variations like 

"statistically significant," “nonsignificant” and "p≤0.05" 

be immediately abandoned in the 2019 Special Edition 

Editorial titled "Moving to a World beyond p<0.05" 

(Wasserstein et al 2019). The initial intent of statistical 

significance as revealed by Fisher (1952), was simply to 
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serve as a tool to signal when a result merited further 

examination (Edgeworth 1885), but this idea has been 

irretrievably lost. Also, the null hypothesis of no 

difference between treatments (parameter values) is 

known a priori to be false, invalidating the premise of 

the test (White et al 2014). Consequently, the fields of 

science would benefit from drastic reform in the 

prevailing statistical inference involving the p-value. 

One of the proffered solutions is a number called the 

Bayes Factor (BF), a centrepiece in Bayesian statistics, 

and an essential replacement for the Frequentist p-value 

(Kass and Raftery 1995). The BF is a principled 

Bayesian tool for model selection and hypothesis 

testing, interpreted as the strength for both the Null 

hypothesis (H0) and the Alternative Hypothesis (H1) 

based on the current data (Kass and Raftery 1995). 

In the burgeoning literature, Bayesian inference has 

been increasingly adopted in fisheries sciences due to its 

ability to incorporate uncertainty and prior knowledge, 

as well as provide information for risk analysis and 

decision-making (Kinas1992; André et al 1997; White 

et al 2014; Hilborn and Walters 2015). Several workers 

emphasized that statistical and biological significance 

differ, and p-values are useless without measures of 

effect size and statistical power (Yoccoz 1991; Johnson 

1999; Hurlbert and Lombardi 2009; Beninger et al 

2012). Despite the perils of the p-values and NHST, the 

use of Bayesian statistics stays incipient among workers, 

especially in the developing nations, because formal 

educational institution implicitly train students and 

researchers to “discover by p-value” using hypothesis 

tests. To advance our knowledge, regression modelling 

using linear models, a standard statistical protocol in 

fisheries, was used to infer the growth coefficient (b) of 

juvenile African mud catfish, Clarias gariepinus (a 

commercially important species), in the context of 

default Ordinary Least Square (OLS) Frequentist 

statistics and Bayesian methods (using uniform Jeffreys-

Zellner-Siow prior for parameter estimate and models 

comparison). This will reinforce the increasing use of 

Bayesian inferential methods for data analysis, 

concurrent with addressing the growing concerns with 

regards to the widespread mishandling of p-values. 

Materials and methods 

Study area 

Epe Lagoon is a shallow (6m depth) freshwater lagoon 

measuring 243 square kilometers and located in Lagos 

State, Nigeria (Figure 1). This body of water provides a 

highly significant habitat area for a wide array of fish 

species, also, serving as a breeding ground and nursery. 

Therefore, it is an important water body for sustenance 

of the local fish industry. Artisanal fishing, with 

predominantly passive and active fishing gears thrive in 

the lagoon. The major vegetation around the lagoon 

comprised freshwater swamp forest and secondary 

forest (Adeonipekun et al 2019). 

 

Figure 1.  Map of Epe Lagoon with inserts of map of Lagos State showing location of study area and map of Nigeria 

showing location of Lagos State  

 

Collection of fish samples 

Random samples of 98 juvenile African mud catfish, 

Clarias gariepinus were obtained monthly (December to 

May 2021) from Chief Market, a landing site for 

artisanal fishermen from Epe Lagoon. These samples 

were preserved in ice-filled vessels and transported to 

the Hydrobiology and Fisheries Laboratory in the 

Department of Zoology at the University of Ibadan for 

further preservation by deep freezing prior to biological 

data collection.  
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Species identification and biometric measurements 

Individual fish were mopped dry with tissue paper after 

thawing, and identified using standard guide (Idodo-

Umeh, 2003). Two biometric characters, namely body 

length and weight were measured. Total body length (L) 

was measured in millimeter using Vernier Caliper (0.1 

mm), and body weight (W) was measured in gram on a 

digital scale (0.1g precision).  

Allometric power model body length–weight 

relationship 

The allometric growth relationship between fish body 

length (L) and body weight (W) was represented by the 

power function model (Eq 1), originally proposed by 

Huxley (1924), which explains the variations in body 

forms with size. According to the equation, body 

dimensions increase relative to each other according to a 

constant defined as b termed the allometric coefficient, 

while the constant a is the proportionality coefficient 

between the two variables  

 𝑊 = 𝑎𝐿𝑏  (1) 

Hypothesis testing for the regression coefficient 

Regression tests two hypotheses about the effect of the 

regression slope (where 𝛽 = regression slope in 

statistics, but termed allometric growth coefficient in 

fisheries): 

i. Null hypothesis 𝐻𝑂 =  𝛽1 = 0 

ii. Alternative hypothesis 𝐻1 =  𝛽1 ≠ 0 

The null hypothesis, HO states that there is no 

relationship between the dependent variable Y=W and 

the independent variable X=L.  In this case, the 

regression coefficient i.e., slope, β1 is zero, while the 

alternative hypothesis, H1 represents a two-tail 

(directionless) state of an association between W and L, 

which is not zero. 

Linear regression model 

The regression model (Eq. 3) is a variant of the general 

equation of a straight line (Eq. 2) where m is the slope 

or gradient of the line and c is the intercept on y-axis, 

that is the value  of  y  when x = 0,  but   with  standard 

statistical notation (where Y and X are defined in Equ. 2, 

𝛽𝑜 = intercept, 𝛽1 = slope, and 𝜖 = error term; Equ. 3) 

quantifying changes in the response variable as a 

function of one or more explanatory variables. It is 

termed simple linear regression if the explanatory 

variable is one, as in this context. Parameters (slope and 

intercepts) regression models are estimated by fitting the 

model to observed data with assumptions made

concerning model error (Chen and Jackson 2000). 

 𝑌 = 𝑚𝑋 + 𝑐 (2) 

 𝑌 =  𝛽𝑂 +  𝛽1𝑋 + 𝜖 (3) 

Several regression cases exist in fish and fishery biology 

(Ricker, 1973), and a regression model proved ideal for 

estimating the exponent in equation 1 after logarithmic 

transformation (Le Cren 1951; Ricker 1973) by linear 

regression as illustrated in Equ. 4. 

 𝐿𝑜𝑔 (𝑊) = 𝑎 + 𝑏 𝐿𝑜𝑔 (𝐿) (4) 

Frequentist framework of simple linear regression by 

Ordinary Least Square (OLS) 

The default regression estimation method use in 

fisheries and ecology is ordinary least squares which is 

based on the Gauss-Markov assumption of the model 

error (Chen and Jackson 2000), by minimizing residual 

sum of square. The popularity of the OLS method may 

be due to the tradition and its ease of computation by 

commercially available point-and-click computer 

software. 

Bayesian framework of simple linear regression by the 

Bayes’ Theorem 

Bayes’ Theorem 

Bayes' Theorem is a mathematical formula used to 

calculate the probability of a hypothesis being true 

based on prior knowledge or information. It involves 

using the prior probability distribution and the 

likelihood of the data to generate a posterior probability 

distribution. This probability is found by applying the 

Bayes’ Theorem (Bayes 1763) modified as Equ. 5 for 

ease of understanding where p represents probability, 

and “|” indicates conditional upon, and H is a generic 

term mostly depicted by theta (θ), which indicates 

parameter(s) or models to perform inference on a 

statistical context. In Bayesian regression model, H is 

either the regression slope, or the hypothesis being 

tested, technically term models (Null Hypothesis, Ho, 

and Alternative Hypotheses, H1 are tested in regression, 

but Bayesian inference can test more than two 

hypotheses) or a combination of both in multiple 

regression, 

 
𝑝(𝐻|𝑑𝑎𝑡𝑎) =  

𝑝(𝑑𝑎𝑡𝑎|𝐻) 𝑋 𝑝(𝐻)

𝑝(𝑑𝑎𝑡𝑎)
 

(5) 

Therefore, quantity p (H|data), or the probability of the 

hypothesis given the data, is called the posterior 

probability distribution, or simply the posterior. The 

quantity p (data |H) is the likelihood. The quantity p (H) 

is called the prior probability distribution, or just the 

prior, and reflects information available about the 

hypothesis independent of (and hence prior to) 

conducting the experiment. The denominator p (data) is 

simply a normalizing constant, the marginal probability 

density of the data across all possible hypotheses and is 

equal to the integration; rescaling the equation back to 

probability. Consequently, the Bayes Theorem is 

conceptually represented as shown in Equ. 6 

 𝑝(𝐻|𝑑𝑎𝑡𝑎) ∝ 𝑝(𝐻)𝑥 𝑝(𝑑𝑎𝑡𝑎|𝐻) (6) 

Model comparison and the Bayes Factor (BF) 

The Bayes Factor represents summary of the evidence 

provided by the data in favour of one scientific theory, 

represented by a statistical model, as opposed to another 

(Kass and Raftery, 1995). Bayes Factor (BF) indexes 

support for regression models (Null Hypothesis, Ho and 
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Alternative Hypothesis, H1) by directly comparing their 

posterior probabilities called posterior odd. (Odd is 

simply a ratio of probability). The posterior odds in 

favour of H1 over Ho can be computed as 𝑝(𝐻1|𝑑𝑎𝑡𝑎) ÷
𝑝(𝐻𝑂|𝑑𝑎𝑡𝑎). Using Bayes’ Theorem, Eq. 5 becomes 

Eq. 7 and further simplified in Eq. 8, where the Bayes 

Factors (BF) are the marginal likelihood of the two 

models (the integral of the probabilities of the data given 

the parameters under all models being considered), and 

the subscript 1 or 0 denotes the model in either the 

numerator or denominator respectively. 

 𝑝(𝐻1|𝑑𝑎𝑡𝑎)

𝑝(𝐻𝑂|𝑑𝑎𝑡𝑎)
=  

𝑝(𝐻1)

𝑝(𝐻𝑂)
×  

𝑝(𝑑𝑎𝑡𝑎|𝐻1)

𝑝(𝑑𝑎𝑡𝑎|𝐻𝑂)
 

(7) 

 

 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 = 

𝑃𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 ×  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

(8) 

Specifically, the posterior odds are equal to the prior 

odds multiplied by an updating factor. This updating 

factor is equal to the ratio of likelihoods P(D|H1) and 

P(D|H0), and is called the Bayes factor (BF) (Jeffreys 

1961).  

Table 1: Classification scheme for interpreting the 

Bayes Factor  

Bayes Factor Evidence 

1–3.2 Anecdotal 

3.2–10 Substantial 

10–100 Strong 

> 100 Decisive 

Source: Jefrey (1961) 

Prior distribution for estimation and model comparison 

Prior specification is an important aspect in Bayesian 

analysis, where prior represent background knowledge 

about the unknown parameter (𝜃 =  𝛽1and 𝛽𝑜) and the 

compared regression models compared (null and 

alternative models). Jeffreys-Zellner-Siow (JZS) priors 

were applied, both on the parameter estimates and 

model comparison. A uniform prior is true, non-

informative since it provides equal support over the 

space of candidate distributions and leads to closed-form 

posterior, and when the data-generating distribution is 

unknown (Rademacher and Doroslovacki 2019; 

Karadavut 2020) 

Data analysis 

Data analytics were performed using R programming 

language and statistical environment (version 4.3.1) and 

JASP (version 0.17.2) statistics. Distributions and 

numerical descriptive statistics as well as Frequentist 

regression model were performed in R programming 

environment. Bayesian regression model using Uniform 

JZS prior (r scale = 0.35) was done in JASP statistics. 

Results  

Describing the biometric traits 

Biometric traits (namely body weight and total length) 

of juvenile C. gariepinnus in the samples ranged from 

201.00–102.0mm (59.68±26.81) in total length, while 

the body weights varied between 57.8–8.40g 

(2.74±15.03). The biometric traits exhibited bi-modal, 

skewed distribution (Figure 2A and B) in Epe Lagoon. 

The juveniles exhibited greater variations in weight than 

length, as indicated by the coefficient of variation (Table 

2). 

Describing linear regression parameter using Frequentist 

statistics 

The Frequentist linear regression model (Figure 2C) 

using Ordinary Least Square (OLS) explained a 

statistically significant and substantial proportion of 

variance (R2 = 0.96, F (1, 96) = 2260.54, p< 0.001, adj. 

R2 = 0.96). The model intercept, corresponding to logL 

= 0, is at -5.58 (95% CI [-5.88, -5.29], t (96) = -37.70, p 

< .001).  Within this model, the effect of logL is 

statistically significant and positive (beta = 3.20, 95% 

CI [3.07, 3.34], t (96) = 47.55, p < 0.001; Std. beta = 

0.98, 95% CI [0.94, 1.02]) and reliably different from 

zero, that is, rejecting the null hypothesis. In fisheries, 

the growth parameter, b = 3.30 indicates positive 

allometric growth for juvenile Clarias gariepinus in Epe 

Lagoon.  Therefore, the results show that the juvenile C. 

gariepinus that inhabits the Epe Lagoon exhibited 

positive allometric growth (p < 0.05) with an exponent 

parameter between 3.07 and 3.34. 

Bayesian regression models comparison and parameter 

estimates 

Models’ comparison 

The alternative model (H1) remains best predictor of the 

observed data using Jeffreys-Zellner-Siow (JZS, (r scale 

= 0.35) prior, evidenced by the increased and updated 

posterior probability after observing the data; the Bayes 

Factor (BF10) > 100 indicates decisive evidence against 

the null hypothesis (Table 3). The allometric growth 

coefficient for juvenile C. gariepinus = 3.20, indicating 

positive allometric growth for the species in Epe Lagoon 

(b = 3.20, BFinclusion= 3.24 × 10+64) as shown in Table 4.  

Discussion 

Positive allometric growth coefficient (b = regression 

slope) was found by the Frequentist and Bayesian 

statistics for the juvenile African mud catfish, Clarias 

gariepinus, suggesting that this vulnerable early life 

stage thrived in this natural habitat, Epe Lagoon, during 

the study period. Intensive search of literatures on the 

web revealed scarcity of allometric data for these 

vulnerable early life stages in Nigeria’s natural water. 

This critical biological trait remains understudied 

because most fisheries studies focus on commercial 

and/or adult populations.  Fry and juvenile stages are 

predominantly examined under feeding trials in culture 

enclosures, because of the species aquaculture 

importance. Several workers reported that juvenile fish 

had different values for b and growth types from adults 

(Safran 1992; Peyton et al 2016; Possamai et al 2020). 

Comparable regression coefficients by Frequentist 

(beta=3.20, 95% confidence interval [3.07, 3.34], and 

Bayesian (3.20 credible interval 3.06 – 3.32) statistics 

were found in this study. Several works have affirmed 
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Figure 2. Characteristics of length and weight of juvenile Clarias gariepinus from Epe Lagoon.  
A and B: Density plots showing distributions of total length and body weight, dotted vertical lines show the means. 

C: Scatter plot showing linear association between logarithmic transformed total length and body weight superimposed with best-

fit of linear regression line. 

Table 2: Descriptive characters of juvenile Clarias gariepinus from Epe Lagoon 

Characteristics Clarias gariepinus 

 Total length (mm) Body weight (g) 

n 98.00 98.00 

Mean ± SD 159.68 ± 26.81 32.74 ± 15.03 

CI (Upper - Lower) 164.99 – 154.38 35.72 – 29.77 

CV 16.80% 45.90% 

Median 168.00 38.25 

Skewness  -0.36 -0.28 

Kurtosis  -1.20 -1.46 

R (Max - Min)  99.0 (201.00 – 102.0) 49.40 (57.8 – 8.40) 

Shapiro-Wilk  0.92 0.89 
Note: n = sample size, CI = confidence interval, CV = Coefficient of Variation, CI = Confidence Interval, Min = minimum, Max 

= maximum value 

Table 3: Bayesian Linear Regression: Model Comparison 

Model P(M) P(M/data) BFM BF10 R2 

Null model 0.50 3.089 × 10-65 3.089 × 10-65 1.0 0.00 

Log L 0.50 1.00 ∞ 3.238 × 10+64 0.96 
Note: Prior probability = P(M), Posterior probability = P(M), Model Bayes’ Factor = BFM, BF10 = Bayes Factor with respect to 

the alternative hypothesis.  

Table 4: Bayesian linear regression parameter estimates  

      95% Credible Interval 

Coefficient Mean SD P(incl) P(incl|data) BFinclusion Lower Upper 

Intercept 1.45 0.001 1.00 1.00 1.00 1.44 1.46 

Log L 3.20 0.067 0.50 1.00 3.24 × 10+64 3.06 3.32 
Note: SD = Standard Error, P(incl) = Probability of Inclusion, BF = Bayes Factor 
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that Frequentist and Bayesian regression estimates could 

be similar, but Bayesian regression allows incorporating 

prior information and uncertainty in the parameter 

estimates (Korner-Nievergelt et al 2015; Kabaila and 

Dharmarathne 2015). Credible intervals and confidence 

intervals are two different ways to quantify uncertainties 

of parameter estimates in statistics. Credible intervals 

are the Bayesian version of classical confidence 

intervals and do not require the existence of a pivotal 

quantity. Bayesian credible intervals frequently produce 

results with precision greater than or equal to frequentist 

confidence intervals (Gray et al 2015), as shown in this 

study. Bayesian inference could be a compelling 

alternative to default Ordinary Least Square (OLS) 

regression in fisheries and ecological models using a 

uniform prior. The choice of prior is critical in Bayesian 

data analysis, which is beyond the scope of the present 

study. Comparable estimates of b may also be attributed 

to the common methodological likelihood between the 

Frequentist and Bayesian frameworks: The frequentist 

Maximum Likelihood Estimate (MLE) functions 

similarly to the Bayes theorem likelihood. 

Consequently, the likelihood functions in the 

Frequentist regression and a prior form the posterior 

distribution in Bayesian inference.  

The Bayes Factor > 100 quantifies decisive evidence 

that the observed data in this study favour the alternative 

model than the null model, but p-value cannot quantify 

evidence in support of alternative hypothesis; since p-

value can only reject or fail to reject a null hypothesis. 

This functional ability to quantify evidence either in 

support or against of all possible models under the data 

space underscore the superiority of Bayesian inference 

over the Frequentist statistics. The p-values quantify the 

discrepancy between the data and a null hypothesis, 

indicating the probability of observing the data under 

the assumption of no difference or no effect, which is 

the major peril with frequentist regression, as in other 

frequentist methods. Inference is not based on the actual 

data but on a long-run chance of infinite sampling.   

Furthermore, the p-value produced in standard (i.e., 

classical, orthodox, or frequentist statistics) is strongly 

influenced by sampling size (< 30) and composition of 

the sample (Baran and Warry 2008; Edwards et al 1963; 

Ho et al 2019). Therefore, researchers using these 

methods may be tempted to stop data collection early, 

and draw conclusions based on incomplete data if a 

preliminary result is compelling, meaning that the p-

value are very low (p < 0.05). This can lead to biased or 

inaccurate results, as the p-value may change as more 

data is collected. In contrast, if a known sample size 

result is ambiguous (meaning that the p-value is not low 

enough to reject the null hypothesis but also not high 

enough to accept it), researchers may be tempted to 

continue data collection in search of a more definitive 

result (otherwise termed p-hacking). 

Conclusion  

Estimated positive allometric growth coefficient were 

comparable by the Frequentist and the Bayesian 

inferential statistics for the juvenile African mud catfish, 

Clarias gariepinus inhabiting Epe Lagoon, indicating 

the vulnerable early life stages thrived in this habitat 

during the study period. In addition, the uncertainty in 

parameter estimates was identical between paradigms. 

Nevertheless, Bayesian inference does not reflect p-

values and test statistics, thereby highlighting the 

fundamental difference between these two statistical 

frameworks. While a p-value is the probability of 

observing a test statistic as high or more extreme as the 

data given that the null hypothesis is true. Bayesian 

determines the plausibility and true range values for 

population parameters that would give rise to observed 

data. Unlike the p-value, the interpretation of Bayesian 

inference is intuitively meaningful because the credible 

interval reveals the plausibility that observed range 

contains the parameter true value rather than the 

boundaries like confidence intervals. Therefore, 

Bayesian methods adopted in this study make it possible 

to make inferences about the actual values of the 

parameter. 
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